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Struc-tureO theorems for the discrimiinant, /-l (W2 of

Hill's differential equati-on are developed by means

of intterpolatory function theory (cardinal series

representations) . A method of solution of Hill's

equation is developed yielding aft asymiptotic excpan-

a-Ion of the disciidinant for large [col with error

term 00iwlt) Asymptotic expansions for the eigenn-

values ~n 'for large n are obtained With errorn

terms O(n'f). Relations between the occurrence of

double zeros of the discriminant and the period of

the coefficient function in Hill's differenitial

equation are established A dicinrtk funo-

tion D(a ) is introduced and an interpolatory function-

theoreti structure result is obtaind

*The research reported in this paper constitutes the
doctoral dissertation of Mr., Jagerman. it was carried
out under the direction of Professor Wilhelm YMagnuse
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I. Introduction

The differential equation

in whi6h g(x) is a bounded periodic function of period ft and mean value zero,
is called Hillis equation. For a discussion of the general theory, see Refer-
ence 1, and for an investigation of the discriminant, see Reference 2. Let
yi(x), y2(x) be the fundamental set of solutions of Equation (1.1) defined by

Sy~o) 1 , yll(o) 0 , (1.2)
Y2 (o) , Y,

then the descriminant is defined by

* , y'2(). (1.3)

Often it is convenient to set X * (2 so that A(X) A(w2).

The paper consists of six parts. Part 1I develops two general theorems con-
cerning the well-nown cardinal series of interpolation. The PaleyaWiener
theorem on the Fourier integral representation of functions whose Fourier
transforms vanish outside of a finite interval is established on the basis of
Theorem I of the cardinal series interpolation. An explicit expression is
given for the Fourier transform. These theorems enable the development of ex-

plicit representations for the discriminant in Part II. In Part IV solutions
asymptotic for large Icol of Equation (1.1) are developed, Hill's equation may
be rewritten as a Riccati equation. By means of a perturbation procedure ap-
plied to the Riccati equation, an approximate solution is obtained. This ap-
proximate solution is then employed to suggest certain changes of the depend -

ent and independent variables to effect a basic transformation of Equation (La).
The transformed equation is then solved by rewriting it as an integral equation
and employing the process of successive approximations. The solutions thus

obtained are asytotic in 4). An epicit aStotic development of the diem

criminant is given with an error term of 0(io-).

The infinitely mazr values of X for which A(X)2 - h are all real and constitute
the set of eigenvalues of Equation (1.1). The differential equation will have
solutions of period n only for those values of X for which -(x) d 2, -d sou-
tions of period 2n only for those X for which 4() w - 2, In Part V certain
theorems are proved concerning the form of the discriminant which, together
with the exicit asymptotic development found in Part IV permit the determina-
tion of the asymptotic expanions of the eigenvaiues. The first four
terms of the expansions are given with a error term O:(p-).



Part VI considers the question of double zeros of A(c*2) + 2 and the correspond-
ing conditions that g(x) be of period n/2. Two theorems are proved, one of
which is established on the basis of an interpolation procedure providing a
representation for a certain disctriminant-like function D().



11. The Cardinal Series

The cardinal series3 is A serieS of the form

Interpolation by means of0 the cardinal series is provided by Theoremis I and
Hl below.

Theoremi I. f,(z), is entire (z ac + iy),

A(y) max If(x + *~

44 ±(z) = (jh)
J."'M t,4i (z-jh)

The cardinal series converges uniformly in every bounded closed domain of the
s-plane.

Theorem 11, f(;) is entire

A(Y) = max If (x + i~

~ f~ ) > f [sin hi~ fsi ) f( jl) + ( sjh) f(jh)].

The cardinsa series converges uniforml in every boun-ded closed domain of-he



The proof of Theorem 1-employs the £undameihtal function sini ft, While that of
TheremII mplyssin2 n_, otherwise, the proofs are completely parallel.

Further, it is clearlY necesSAX77 to prove Theorem I only under the supposition
h z -1 since the extension of the theorem to interpolation at the points jh
follows on replacing z by -z/h.

Pr'oof. Consider the integral

in Which CN denotes the Nth of a sequence of paths Which are squares -in the
t-plane6 t~ + Vj) and whose cornerS are (N + 1/2)(+ 1 + i). For the im-
plication to the right, it will be sufficient to prove tht under the condi-
tioi~a of the theorem

Urn I(N) _ 6(2.3)

Since the singulari ties of the integrand occur at Y.- Y. + j (j integral
or zero), the calculus of residues yields iftnediately

fT7,s)z +* ~jj ( ~ 0 (2-4)

.sin Itz j=. -CO-z

from which the cardinal series representation of f,(z) follows. Let

I(N) -1I + 12+ + (2+.S4

in which

12 9 -I (--z) -- - t+

2ni N~i (Y. sf(- )



a 21ti(t-z)sin fte

consider

(~ J- 4 4+ + ill-z) qj (+ i )

On~e has

N- N+I + Pi-W I sin ft(M+~ + in) I

IN+j + i-aj >: jIN+i + itilj 121: ~ N+j I M

Choose N so largeta N-9- > I ther

also

sin ft (10i + 1-0i + Rf)T > IentIiI (29

2
hence

I~iI~ ~N~j-Z~ ~ (.10

The foil-owing well-known lrnua will now be employed.

Lewi. (x) bounded for allI x, Un f (x) =0

ff~x~dxSO
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Proof. Ofe has

f f ~~x ~ /(x)dx + ~ f(x)dx, L4(pX. (2.11)

Choose g~ s0 large tha.t 110(x) 1, -t#/2 (e > 0) f or x > p. then

S fr(x) dxIit 9 /2. 202

Since f(x) is bounded, one tay choose X so arge that

i f, ( f 4/2, (2.13)

and, hence, the lemma follows. Applying the above lema to Equation
(2.10), and using the condition A(tj) = o(e" Iii) of the theorem, one has

The investigation of the integral 13 follows exactly the sAM pattern as for
II above, hence, one also has

Urn 1 o. (2.lS)

The integral 12 is given by

N~i Ag+ i(NI)
21i+ i(N+I) slai ((42.16)J~

One has

1+ J(N44)"Xl + J(N4) z+ i (2.1)

hence

1121 dg.SI (.8
s-n ( + j

Also

sin it(+ + ie(N+))+)l 1t(N-4) • ( N+J)) (2.19)

J~it(~j) - *-7r(2N+1)); 1. eu(214N+l) > 1 - * > ; 0. Hence



lSin T(( + i(N4))I le etN11.(.0
2

The integral 12 is hoV bounded by

2N +i
ii- ~ ~ i(N+4) A(M+J ) N (2.21).(e)N+ I

Thus, by the conditions of the theorem,

!ith 12 0. (2.n)

The investigation of the integral 14 does not essentially differ from the
above investigation of 12 so that one has also

lim I = 0. (.3
N -,.

The -Mp-ication now follows6 For the implication to the left, let

n
Sn : i c t(zj)

The s are entire functions, and, since the uniform l-it of a sequence of
entire functions is entire, it follows that

n

~ u- (-;J) sin , n,.(-J)f~)=lim ~a d-)=Z aj 2*~~4 (225)

n I ~n " i(Z-J)

is entire. It is clear that

sn w (s0'e0 1 ') = o(e' 1Y), (2.26)

and hence,

f(z) --o,(efl'), (2,27)

In Equation (2.25) set z (- integral), then

ahe = f(), (2.28)
hence,
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-Thus the Im-plIcationt to the lef t follows. The sequencde of functions
sin ~(~)wc~)tonras an- orthoorinar-l- set over, (.i. C (0 < w). -The proof
folaows immediately on application, of' the Paraeval theorem for Fourier
integrals5. Since

mu2 JelU~njJ du, (.0

it follows that v/7/t e±UJ (11.11C it) -1s the Four'ier transform of
sin ~(~/~~j.Hence,

fJ~~n4n 'j f dU, (2.3-1)

= 0, k J,

= 1 k =j.

Consider the closure In oroftestf functions -m~j

it follows-from T heorem I that if £(f setie ~~ o~w I(to d +
and~~ f~~~2 -wn,c-) then -P(wa) is in the closure.

The well-knoun theorem of Pa2Ley-Wiener may now be established.
Theorem MII. f(co) is entire (to a + iUL), f(co) - o~eu I) f~ac 2 -mm

44 Fu~L2(i~i~ ~ f(ow) f e'F(u~du, and, -in fact,

F(u) = . f f(j) e_-iuj

Proof. By Tho-re-m I

f()=~ f(J) AN- (2.32)

and, since f (ma) is in the closure of

pin-~ 
' m( -

one also has



2gy (2.33)SIf(j)I - -. (2

Direct substitution of the expression for F(u) given Am the theorem into the
Fourier intetral shows its formal validity, thus it is only necessary to show
that

lint ei' f(j)e-iuJ du- 0. (2.34)

M . i- j=M
N..

Application of the Schwartz inequality Yields

" 112 e 1i ~j f(j)e~i u j du (2.35)

J=m

1 N2

< 2nt  {V (j)e-uj du.

Thus
it N e-iUj du 2 N lfu) I Oi (2.36)

The limit zero is obtained on reference to Equation (2.33). By the same
argument one also has

1 -N
lim 2n J im -(j)e-U du 0. (2.37)
N-.. #W j--N
N..

and hence the implication to the right is established. For the implication
to the left, consider

f(m) = e±W F(u) du (2.38)

in which F(u),L 2 (-ir.i)o Because of the finite interval of integration, f(m,)
is clear!y ent~re. Also since F(u)'L 2 (-,it) one has, by Plan chrel's theorem,

that f(a)'L(-,.). It remains only to show that f(c)'o(ei'IL). However, the
Schwarz inequality applied tO Equatjon (2.38) imediately yields f(a) -

O~i.L~'2 eit~l.),and hence the implication is established.



lIn. AInAl tic- roperte . f the Ditcrim-inant and Cardinal Seriep Rersn ations

Theor'em IV. Th5 d-iscrimanant A(wa2)(c) = a + ipi) is an entire even function of
0) satisfying A(eO2 ) 0(el,91) for all lrge Ictot.

A theorem of 9ague and Bernstein's1 inequ mafeality- 6 immediately yield Theorem IV.
However, it Is easy to prove the above results direct Ily.

Proof1 Equation (L.1) may be written in the tollodring integral1 form.

Y-(x) z= Y(O) dos Wixz + yl1(0) 81AU (O.)
CO)

~i sin c(k-U)g(u)y(u) du6

The functions y1(x), Y2(x), therefore, satisfy

y1(x)=coo~x~ 1 , sin co(X U)g(U)y1()d, 32

SJo

y(X) = I sin ce x-u)g(u)y (u) du (3.3)

Since

lin csca xeIIIIt,(3)

one has

I~ ~ ~ X f +~x) e Y2 j(fe~(U)y U), (3u,
-o

iLn which M is a bound on g(x),, ThuS,



g(x) < M for all x. (3.7)

The following lemma wdill now be emaployed.

Iy(x)'le <Ce' + E fXey(x6)'I1 y(u) duli

C > 0, y> 0, E- > 0

Proof. Let

W - EJ eTY(Xcu) Iy(u) du, (3.8)

then

Y(x) I 'C CeNT + W, (3-)

1W E I Y(x) I+ yW < czejxT + (I Y)W, (310)

w(o) =o . (3.11)

One now has

dx

and, hence,

W < Ce(E+Y' - CeTx, (3.13)

The lemma follows from Equations (3.9) and (3.13). The above leia now yields

Iyl(x) < ~eAJI+11 (3,14)

From Equation (.)one obtains

Y12L(X) co-' Ca~ fX con &O(xu)g(u)Y2(11 du. 3* 6



2(U (3,17)
.10

Equation (3o15) nw -yields

, ( e(M/g,, + ,i')2 (3,18)

Thus the discrimiinant satisfies

e2f(/ Cal'~ + (3.19

and Theorem IV is established. Since, from Equation (31)

M 4,~ w + !OIf sin ca-u)g(u)y1 (u) dut J Xle (.

and from Equation (3.15)

o cos C(x-u)g(u)y2(u) du. j xe(M/9IW , (3.21)

one has

-J( 2) c 2os o IT + (3.22)

The following theorem has now been established.

Theorem V. A((2) = 2 cos it + O(I lgle-" -1 for all large IwI. Actualy, the
estimate of Theorem IV holds for all c since A(co) is uniformly bounded on

the uwhole real

The function (.. )-A.(O)}/w 2 is clearly entire and 0(1(1oI"20I! P) thus, the con-
ditions of Theorem I are satisfied w-ith h 1 1 and hence one has

Teorem VIo A(N2 ) 4 4(0) + - -± A(i?)-A(0) sn it(i)

The series converges uniformly i every bounded closed doan of the .- plane,
Similarly, by Theorem V, the function A(N2) - 2 cos ?t satisfies the cond-
tions of Theorem I. Hence, one ha f the following theorem.
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Theorem VII. A(oo2) =2 cos noo + $i u4 )hj).2 l Jt1 -)

The series converges un-iformly in every bounded closed domain of the c-piane.

Theorems VI and VII provide represent&tions for the discriminant in terms Of
its values at the inte-erso It is now possible to obtain Fourier integral
representation$ of A((05)4 Ofte has

Theorem VIII. A(o2 ) = A() + C 2f eUw F() aiu,

F(u)A(,,)-A )e

Proof. The untiform convergence of the Fourier series for F(u) permits term-
wise integration. The theorem now follows on substitution into the integral
formala for A(c02 ) ard reference to Theorem VI.

The function (A(w2 )-A(O/A e o 2  (,,c), and by Theorem V, the function
A&( 2 ) - 2 cos ifco also belongs to L0( -,m). Hence, they are i the closue of
the set of functions

The Parseva. relation may now be applied to obtain the folling theorems.

Theorem IX. -; ..... df=Z -.- .A( ,

rm  22

Theorem I1. W((02) 2 Cos Aca} do ME _{~2..())

Theorem III (fuley4-iener) may be applied to the ftunition A(w2 ) - 2 cos n..
One Obtains

Theorem XI. A,() - 2 Cos RO + _ f G(U) du,

GON) W. PA&(j,2) -2( -I)~j eiuj



A result of Poisson tytpe may be derived from Theoreft VI, namvely,

The orem XII. - -- doa 2 (2 -

02 j 2 3

Pr'oof. The uniform convergencde of the cardinal serie -in Theorem VI directly'
yields (a>5- 0)

ra A(2)h( )dc Aj).(0) a if- ) w.(t 23
fha -- ; J2  I (s

Consider

-A.(j-J O) M 4-02)4~( 0) faj M-o.(324)
R = ~ j2n- j2  J a (T l

Since

sin ~ d= i one can write R1 as follows,

R (AU do+ 3)5

J=R li: j2 -o II(CO-J) Jfac-~
Integration by parts shows that

f 5 in~ d o + 4 
C

hence,

The quantities C, Olt C2 are constants uniform -in a- and

lt a -nA+ n integral),P then



1 il 1 2.(3.28)

_ - + -+

(a-j)j 2  aj 2  12i a2,(a j)

it follows that

-- -0(1/aL) (3.30)
1 ~ (a-j) J

Also
1 0*1 1

(j-a)j2  S j( J-a) ~j 2  (.1

and hentce

- -- (*). (3.32)

n-> (j-a)j2  42

Thus

R - 0(1/a). (3.33)

Equation (3.33) establishes

r . .d,- ____ (3.314)

Sic £o~)i n even function of __~ e poiwer series for A(w2) aibout the

origin has the form

=(O2 Am0 + (02 +~) **~(.5

Hence, the term j - 0 in Equvation (3.314) ;ai a"'(0). Use of the well4know

j, T6(@36)

now yields Theorem X1I.
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Theorem i yields representations for A(w2 ) in terms of the values of A and
AI' at the integers. The theorem may be applied as above to the fUinctions
( 2 )4()}/ 2 and g(0A2 ) -2 cos To ith h 2. The rdsults are embodied in

Theorems XIII and XIV beloW.

Theorem XIII.

- ACO + ar T i,/ @?) 2
j tt/2 (.-2j,) I h 2

Theorem XIV.

-2 dos "iCO + ~ i2L~j 1 (A(hj2 )"2+(Oz 2j)2jA'(t4j 2),I.

In Theorems XIII and XIV the series co-verge udi.formly in every bounded closed
domaiti of the (aplane.
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IV. A Tranfornatiwn of Hill's E..,quationt and an Aym ptic Expanso f:or te

Consider the substitution

Y(,X) -eifwd! (14.,1)

i1n Equation (1.1). Since

Y'(X) ivy) (14.2)

y"(xW ivy - vigy (14.3)

one obtains the Ricleati equation

iv' I u 2 + C2+ g z =0 (1414)

A perturbation form Of solutiont of 'WKB type~wil1 be obtained by the inttrodu-.

tiont of a sm~all perturbation parameter t, as follows

tiv, -wV2 + w)2 + g .(14.5)

E~quation (14.14) is obtained from Equation (14e5) on settin 1. Lot

vw e It * e 1 + *.,(14.6)

then

W O2+ g)* (14.7)

Thus

W (CO2 + g)i* + F i 4 + .. .(48

Setting e -1, and substituting in Equation (4.1) Yieds

yWx (co2 + g) 4, 0!(+)d (49)

Teabove procedure renders plausible the approx mtion of Equation (4.9).
in order to obtain exc eutaohrmto srequired leading to the

saeaproxipate solution but pemittinig the estimation of error. For that



purp-ose, the following change of variables is suggested by the form ofE.quation (40.)e let

h (c*2 + g)* y, (1.10)

f . g)i

in Uhich co is so large that oc2 + g > 0. Considering h as a function of ri,
one has

dh 0c2 + g) S/1 4 g jY + (,22 + g)-4 y,

d2h _ (c2+g) 4 g,2y + j(c g)./h gy + (2+g)3/, y,. (14.3)

Thus Equation (1.1) is transformed to

d2hd + h + P a oj (4.14)
di=2

(co2+g) 2  16 --C - 3

For the pupose of approximation, it is best to rewrite Equation (4.14) in
integral equation form. The required integral equation is

) - n f s (4)(u)h(u) du, ( 1.6)

h(O) cos i + sin T)

K.(r) - F(x).

For the deteruination of y1 (x), te initial conditions on h(n) ar-e

ho)w (o2) + a), (4.17)
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in whieh

g(O) = d, (4.18)

The function hi( t) is defined by the initial condition s of Equation (,.17)i.
One has from Equation (4.16)

- sift (T-U)X(uOh1 (u) d.u, (461)
0

f1() = (02 + )l cos -1 + jp(c02 + d5Af sin I!.

Similarly for the determination of y2 (x), the function h2 (tl) is defined With
the initial conditions

h 2L(O) 40, (20)

dh2 "I
:& ( W2 + )4 .

The function h2 (1) satisfieS

2 ) (1) - f sin (r-u)K(u)h 2 (u) du, (.21)
0

i2)m(oo + a)~4 sin no,

Equations (4.19) and (4.21) may be solved by successive appro4"tis. De-
fine the sequences {Ilk l , ({Mk } by

Lk((1

Nk(n) in ('r-u)(uN)k.(u) diu, (4.23)

to(,n) * -z(),



then

h1 (Y1) = Lk(*I), (14. 24)

k 01

h2(i) = ~ZMk( 11). 1.

Pr'om Equation (4.15) one has

F(x) i.Kx(tr) =oi(0 4) (14.26)

uniiforml in x. S5ince, from Equation (14.19)

L o ~i (14.i2 7)

un-iformly in ij, one obtains, by inductibin on Equationi (4.22),

= 0( -1 k. 1 (14628)

Also since from Equation (14.21)

MOa Q( 12 4)- , (14.29)

one obtains, by induction on Equation (4.23),

mk = (Oi-14k4 i~ (14.30)

From Equation (4.10) one obtains

y'(x)~~~ )-5/V~'4 h + (0~2 + g)4 h(1.1

-,us -in order to determine the discriminat it wiill be necessary to evaluate

%2 /d1. Equation (14.214) gives

dh2 d dk(1432)

From Equation (1.23) one obtains

- Cop (it-u)K(u)mkl(u) du. 1.,



it follows that dMk/d) obeYs the same order relation as 1Mk itself, that is,

The function y1 (n) is given by

(ft) (62 + d)"4 lk (h.35)
k=O

AlSO the functi yt(ir) is given by

) 2+d)' (4.36)
2 ~ 2~ Mk(n) +~c xi2 4r' k-0 dy,

Define 8k((02) by

8(V2) ~ ( 2 ) 4  -j) -- w-.) 5... .cui) 2 k )7)

then the discriminant A(002 ) is given by

4(C2) 8 k((O). 24.38)

Equations (4.28), (4.30), and (43) show that
-(2) = O(o-hk )- 39)

From Equation (4,35) one has

W- o(), (1.40)

hence,

ok(m2) o(N3k /ll) . (4.41)

The sum 8 8k(;02 ) may now be readily estimated. Thu*



a I a

One aV now state the foidwing theorem
n

Theorem XV. A(w2) = 6k(o 2 ) + 0 w(1 1 3n3) for all real to 0. The first

th ree 6k are given by

60  2 cos i, (4443)

61 , isUif K(U) du,

o o

Since

((,) 2 + g)j da, (4. 46)
-0

one has

U Z gat + - fX gd - gdd (4.47)

+L oI )

and, hence, T is given by

:7= Us 4 3 f I g2d 2~ f g3d4 11,jg f g4d (41-46

One now obtains for 80

60 Ao cos nc + B0 sin Riw + OOwIC 9 ), (4.49)
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pft 2

J K, u)du = J F'x) (co2 *g) 4. ,(14.0)

From Equation (4.15) one has
F(x) =t .g2 4. (dg, + 2)-6 (. g2 " + 5 , + (.-51)

and since

(co2+g) =. +j-og -= ~0 Kg. 61~7i 0~o- 1.2

one obtains

Alo 3  3 om5

For)&2g)d -h opttom o6- -the chage~~~ of 2 diale gvn y quon~ (4.4) i

asd hence

_5 A1 cos *tc B+ _i + * (i® 9 ),_ (14.56)

-- 128Jo



Tedete-rmlhntiona of the LSymptotic expansion for 8 is Some~hat More iftvoled.Atrusing the change of variables of Equation (4W 9uation (4o,,4) becoe's

J"f2~ (4657)

(c*2+g(x 1 ),)idxldx.

Usinig a trigonetric identity, Equation (4e57) bia~ be written as lollows:

82 ~ fcs~~+u)()w+~)*~ 1 (*2g )idx,-dx (4,58)

- cos 71 j! fl ~)w+~)~~ 1 (o+~i)d~x

Integration by parts and Equation (4,,54) establish that

jo XF-.() (c 2+g(x) )-F(x) (co2+g(x 1-) )icxidxw ( F(x) (o2+g(x)) x) (4-59)

Thus!

8 n ~tx cos( :**2u+ u)F(x) (W2 +g(x))F(x)(co2+g(x))idx dx (4-60)

From Equation (4.,47) one has

il - 2u + 2u, * c(Ot-2x+2x1) or jx1 gdF + 0601(4.61.)

Thusa,



gag~u+u1  (4*62)

x_

Equations (4.62) and (4i53) yield

dot w~)I~x)~ -) {(2(i +nXi(x)+ (4j.63) 2 " x)

(x)"(XI g(~ 3 5 -()g-~x

+l (I.) gIt~xlgttix Z~ qcos1 ci~ 2 ,X )

322

+ - (xg(9 7 /gd sin c*(n-2x+2x 1 ) + 0O9)
16

On the assumption that g(x) has an integrable thitd derivative, one MAY apply
integration by parts to obtain

jXfX{(3r g(xj)gI(x)gw(X) + i g(x)2g"(X) (4.64)

+(.Lg(x)gI(X)g"t(Xl) +e ~ gI(x) gi11(x 1 )

+ g(x)git(X1 ) (Yf 94) }Cos O(xw-+2x1 )dxjdx 0( c (I"ai

Thus



82 -_ ig(x)g'(x,) co$ ~i-x2 1 d 1 d (4. 65)
32

+ic TI ~o7 ffgIxn( l (fgdt) stin ca(ti-+2xtl)dx1 66

gt"(X1)oCO ct-x+2x1 )d-x1  olHx sin nco 466

-j~~g"o)sill 00(it-2x .- d gill (X,)Sin Son2+2i
0

one has

17 si-n itc* (jt ) d -7gt(o) fg"(X)Sin cao(u-2Xt)d- (4.67)

+ 7 fgil ( x gill (XJ )si co(-2x+x)dx d ~t'l)

fnegato by pat y Ieds_

0

f- 10- t

g"' (x)sco wi-x)d U ( l" (x) (o c69

and, hence
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64 Jo

In the first iterated integral of Equation (4i6?), it is advantageous to inter-
-change the order of integration. Thus

f 0 i't.)d-x fg"'I (x 1 )sin cao(t-2X+2x 1)dx1 is (4.71)

fg~ I(X )dx1  t()j~c~t2-.)x

integration by parts yie--lds

ca~i~-x'-x1)x -~~ g"(o)cos ca(-2x)(.2

-p ~og"(x1 ) cos ftw~

- jo~ fg"'(x) cos caoit-2x+2xi) dx.

x!

Thus

f f'g"(x~cix fg", (x 1 )sin ca (n-2x+2x)dx 1  14.3

fog" (xi),cos co(n-2x) 1

18_g(xlx 1 )x ~~m2)x

4- ~8"' f~g' (x 1 )dx~fgHI (xco c(,-- MLdx

Since g"' (x) is of bounded variation, one has



Jg'(I) cos c(t-2x2z)dx =O'(IcoC )s

Hience, the entire integral expression on the left hand side of Equation
(4.13) is O,(Ieoi~). One noV has

62 4 iasin ft)f g"x 2dx (4-76)

1+ 4 -7 Jg (X)~ fx x I(x)(f dg-)sin co(u-2X+2x1)x + O('icor9-).

Applying integration by parts, one has

+ iw&l fj{gr (Xi)f) -cd g"(hlj)g(x} Co cO(i-x+2xj)dz1

From the bounded variation of

g~(xi) (fx $d) g(xlg(x1 )

one has

Jog I X 1)(Ii )9 gI(x)g(xi.) co (o~u-x+2xl)dx 1  (4. 78)

G( 0)
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Hence

62 = -7 sin itm, g,,(x) dx (4.79)

-l.=8g'(o) gdo \aJio~d2 6i(4 )(

Since

is of bounded variation, one finally concludes that

62 A2 cos WO) * B2 sin 1 + o(Iw-9)o (4.80)

A2 -0,

B2  f

Theorem XV and the above determination of 50, 81, 62, no yleld the followi

asymptotic expression for the discriminant.

Theorem XVI. g" (x) is of bounded variation over (o, it)

4(4a ) # A cos ,n, + B sin mo + 0(1 w-)

A 2 !- ~ g2d)2 c-6 + [ g2do f dg3 . 92d x]8

64 10gd [~f!Id - ff3o]J
.= f g2dt " - . fg2d - f g3 tjci --5

ng~d. g,_'d4 g 2-_'n.gad i-7

The form of &(w2) in Theorem XVI may be greatly simplified on obserig that
=j 2 + 0O(1 1 9 ) Thus one has



2 Cos iup + O'(icj; 9) ,(4.8l)

1i 312A1I-1  _

[12871 6hdt + j-d* j gtd}7

it iiuay be rem~arked, that the coefficieita of. the powers of co in gquation (4j.81)
Aae final, that is, extending the asrntotio expansion beyond 001 a 9 ) des
ndt change the coefficients Already fo-und.
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V.A0YriPtotic._ UPA48ions fo~the tigentVa Iuet

it is the pr'esent purpose to deter-raina expansions asymptotic for large n of
the eigenivalues XXnl, for which Equation (-1.1) h~as soliutions of period
tE and X,2 X l'- for which Equationi (1.1) hag solutions of period i, To
this end," tfa extpfficit asymptotic excpanlsion of the discrioinetant given in
Equation (4a81) will be emnployed. H-oever, it will be necessary to establisrh
Aft additional structure theorem for the diat

It is imonl, or can be shown~ directly from Theoremi XVj that for eaCh v > 0
one has

Ac2 A dos mac + B sin !to + 0 (,co2v-h) (5,i1)

ifl which there are constants a23, b2j~l So that

v+l

A ti 2 + E d2 -J (5.2)

V+2 2(~

B ~ j~ CO) j+l*

it follows that A(co2) rday be put into the form

cA 3 os 7" + O(O2 )(5-4)

in which there are constants 02j.1 SQ that

The constant 02.. ro ore uctionals of g(x) and are cQely in

depenident of v.

Corresponding to the eigenvalues Xn-1' X 2n' 'K '2 n ar the- quantities
~2nli n' '2~l. cc' 2 ,respective~y, - n whic CIA c02 -- It is known that-

n-,h6 zeros of A( 2  ~ad ~ ~ 2 are the tieros of-
Ao 2 ~ Thus the equations

VA77T772 Cos RuP 2+ o(or2v"4), (5.6)

-~B co _1p9 - g2 + o(-2- (57)

serve to deterine o ymtt~ fomulae. for 002n-1, ns Oli " Wl2ns respeQ-
tively. A theoe of Hostadt7 States tha i l)has 1rvaie.upt
order v, then



m-3'2-

o2 -nl = Q(n~V2 ), (5,8)

'='2n='2n-1 0 (n~V2 ). ( 5o9)

The following theorem mat now be established.

Theorem XVII, Let g(v)(x) exist and be integrable for v > 1, then there exist
constants C2jI , independent of v so that

A,(60 - 2 cos ftp + O1(o" vii,),

Proof. in view of Equations (5.4) and (5.5), it is necessary to prove only

that

A2 + B2 =2+o(c-2 ) (5.10)

Consider Equation (5.6). Let w > 2 > o in which Q is a constant, and let
X > 0 be a constant, then the inequality

A2 + 2- K,,2v4 > 2 (5.11)

is contradictory to the known existence of the infinitely many eigenvalues

02n-!' (2n since
2 + (o N-4 ) - A+B cos nwp > 2 + 0Q(-2v-4) -- V >0. (1)

The inequality

"qJT-i B-- ,-2 +W~v-, w> 2(5.13)
implies the existence of two solutions, say (IP, (P2, of Equation (56) in the

neighborhood of every sufficiently large even i-nteger 2n. Let

+ B2 + c,(.1)

c > K 0V, c 2, (5.15)

and let Equation (5.6) be rewritten in the form

(2 + ) cgs n'p - 2+4d, d . Q(0-2 "4) ( 6

also, set (p 2n + 6 where 6 is smal, then, since cos nV = coS 06, the two
values of & are given by
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82 .4i + ()

1 c-d

The bovevales o ~62 were obtained fro the expansion of cosn i h
neighborhood of the origin. Let 9p 1 2n + 6 l o2 =2n + 62, tlhan 61 82
(01 " (2 and

8- 8 2 = 2P, + 0,(E) (5.18)

Equations (M.1D, (5.!6)) and (5.18) show that

81 - 82 > 0e 2  ( 9

From Equation (5.5) one has

2n + t2, (520)

in which

01 el 62 -F-2-(5.21)

Hence, from Equation (5-19)

'c2n - '02n-1 £ - "2 0(V) 0nV (5.22

Equation (5.22) contradicts Equation (5.8). The argumuent starting from
Equation (5.7) is the same as the abov e ecdpt that (p,- 2n -1 + , P
2n -1 + 82 and contradiction is obtained to Equation k(5.9)., The liack of
dependence of the C2,j... on v follows ;from the finality of determination of
the 42j, b2j.4 in Equ"1atoS (5,2) and ( 31 Since there are infinitely

man c2nilo1 Cc~ wg>e 2 n inec 2V 2 ,c-ae polynoials, Equaion (5.,10)
is true for all! co 9 0. it is now possible to establish the foll-owing theorem
giving the asymtotic developmet o h eignaus

Theorem XVIII. g( 6 )(x) exists and is -integrable



"4n () 2  4 (1 ) 6

D)2  D6

2n (2 + 6( )

-1 n (2nD2)2  n-
_1) + . + + -- -.. 0(n? )

( n2) 2  (4,- 2 )' (4n-2) 6

in wUhich

D -//r g 2 dx,Jo

D.=/u {g, 2  2g3},)d,

D6  VA f { 5g - logg' 2 + 25g" 2  dx - 5122

Proof. Theorem XVII permts one to write

((0 2 cos Itp + o(00-6), (53)

8
(p * _ + -2jl (c,24)

*,_- 02j-1

To determine c32n_!, 0 2w, one has the equation

sin 2 eeM25)

and hence,



0 =-n o(8), (5.26)

Thus

0) + C -3  c- '5 tcel 2n, + o,(064), (5,27)

et

to m 2n + e- (5.28)

Then

s + C3(2n+,)- 3 + C5(2n+t)5 + 07(2n+t)-67  o(nj8 ). (5.29)

Equation (5.29) now yields

C 3 05 __*G- + 0 1,4 )
- __ (5-30)

8n3  3,25  128d7

One now obtains

X in2 4- 3 5 C 5c3
2 2C7 +o(n7) (5.31)

2n2  8n4  6,n6

Using the explicit values of C, C, C7 as given in Equation (4.81), one ar
rives at the asymptotic expansions given in the theorem.

To determine 1,2nol '2 n, one has the equation

cos 2  p = oQ(-16), (5.32)

and hence, i 2n - 1 + O(w-8)q (533)

Let o = 2n - I + z. (5.-34)

Then one obtains 2

One now qbUns

. . . . .3 ... . 32 + 2 0 ( 5 06 )
( n ---)2 (2n -1)4 2 ..)

Using the explicit values of 3, C5, Q7, one arrives at the asymptotic expan-
sions given in the Theorem.
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VI Codtin ohtgx ~ f Period ni/2

in the present analysis, the differential Equation (1.1) will be replaced by

the family of equations

( { g(x,O)}y(x) = 0, (6.1)

in which

g(x,e) = ei2 Z g ei2  . (6.2)

The function g(x) is given by e 0 O. It is clear, from Ig(x)l < M and the
periodicity of 1(x), that Ig(x,e)J< M uniformly in x and e. Cofsider the
sequences (Uno , {Vn}o defined by

un(X) = l/w ginf n k~ UO(x) coo(&-,(63

Vn(x) - /~ f sin ((C )g( )Va.l( )dt, Vo(x) sinO(/w, ( 6 .)

then!

yl(x) = j Uk(X), (6.5)
kwO

72 (x) Vk(x), (6.6)

k-0

and

Ak h(( 2 ) (6.7)

k#-O

in which

Ak U k(n) + V'k(II) (6.8)

A theorem of Magnus1 P2 shows that

((02- ) A() o( rnlewIm) (6.9)
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In particular,

2 +0O~t 6e1 ~) (6a10

it wil be of interest to compare &(w2) with the function E( 2) defined by

A(w2) y1(C/2) + y.2( / )o (6.11)

Paralleling the derivation of Equations (69) and (6.10), one arrives at
similar results for 1(0)2 ). in particular,

4( 2 ) 2 cos 02 (6.-1-2)

bi(402 ) si t-c 2- (6.13)

and

.2 Cos jAcc+ AIJI- ed a(2r+ 1 (6.14)

00 co e I6 LI).

Define the function D(cJ2,e) by

D,(=2) - (c 2 ,e) + 2 - -A(w2 ,) 2 . (6.15)

The following theorem will now be proved,

Theorem XIX. D(o 2 ,e) - ojcoi) @ -ri = 0(-- < r < ;) co real. The
estiimate holdig uni±enrly in 0o

Proof, If g2r+l 0(r-- -) then g(x) is of period n/2 and yl(, /

72(x + /2) a esolutions of Hill's equation.

Thus

[7(-x + R/2) 1 [yl(/2), Y l(I/2)i[Yl(x)i (6.16)

1
Y2(X Y'2 (n/2)JL_2(X)I
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and

[y1(z + it) y(nt/2), y' -,(/2) 2 -y1 (x) (6i.17)

2(x+ 4t) Y20 y'(t/2)1  (Y(j

Since

Y(x+ It)j [lY2(11) ylg(iOJ L 2(xt)J
One has

y (t/2), y' (n /2)1 2  F1(6.19)

[yg(I/2), y 2 (it/2)J Wy2(ir, Y20

Thus

'1 (02, 0) + 2 my 1(ft/2)2 + y' (fi/2) 2+ 2y'1Cw/2)2R)+2.(20

From the Wroriskian

y1(x),2(x y2(z)) - 1 , (6.21)

y1(x), Y'2(x)

one obtains 2y' (n/2)y 2- 6.2
1 2(nt/2) 2 1 w2y'(t2

Hence A((o2 Qe) + 2 =y('/)+ y'2(it/2)12 2IN2 0)2 (6.33)

Thus if 92r-+1 * 0- ic" r th --,Q~I~Dcc3 ) - 0 m(cI).(h

EquAtions (6.10, (6o114), and (6.15) yrield

D (aO9) + 2 e2(r1 !~ o(042) (6.25)
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in which co is reaL., The condition D(co2 ,0) = o1(I I ) implies that

- i2e(62&l') g2r+1 _ (6.26)

2r-u

for all 0. Hence, by the uniqueness theorem for Fourier series,

92r+!= 0(-IF < ' .

-Te next theorem presents an interpoiatory property of D(co2) which is inter-
esting because it follows from little quantitative information on o..,

Theorem XX. All zeros co. of A(o2 ) + 2 are double and D(co 2) O( & 'd
w D(02) _0. ) ,j

Proof. Consider the integrals in the t-plane (r , + ii, r real)

0~) 1

2firi _C 2

The paths C are squares to be defined below. If

lim I = , (6.28)
340,0

then one has, on application of the calculus of residues,-" 2
D(co) - - (®2 [ (___ 2C3A-)--Go 2) (6,29)

2 A(w2)+2 _____ ______W__(WA 2 --- -- j-2+(.9
JiAP20 t (Wa2) (W-j)o-

in which the series converges uniforml in every closed bounded domain of the
co-pl . The theorem follows directly from Equation (6.29). It is onyV neces-

sary, therefore, to establish the validity of Equat!on (6.28),

From Equation (6,10) one has

A( (# 2) + 2= 4 cos2  a U (m"2 ) (6.3Q)
2

for -real co. Thus,



~j -Ja1 + tj (6.3,2)

Then

E j OIr') (6.33)

and hence

oo 2j - 1 + o,(I 1 j (6-34)

A Considerably sharper result is avail.able in Theorem XVIIii however, no more
than is given in Equation (6.34) w-1ll- be needed. it therefore presents inde-
pendent interest that the crude estimate -in Equation (6.30) suffices for the
investigation. Define 2.j by

A* 2 -l 2j + OOli'11), (605~)

then the corners of the squares Care given by 42 + 12 Let

I) 1 1+ 12 +5 + 14 (6.36)

in which

21t2

idn -Q2

-2i

I -I ~(6.38)
-2

~ 2uiQj (Yo-)CA 2



Equation (6.25) shows that
D(,O2 00 cal m O-i Ie.V !) (6-41)

One has

&n f( 6.lj2)

9j + ifj -l1 (2

j

Sin aO

2+ irl ca~ 1 - lct 21 00j 1, (a Io ( 5.0), (6.4-3)

one May choose j so large that 2j O(jW 1 ) I i 5 0, then

1 0 dn___

One has, from Equation (6.4),

D O(It -l. e0(lii ), (6.,5)

henee,

1 _J V(646)

From Equations (6.10) 4d (6.35) one has
jA(Y2 ) + 21 > O(e ' (6.h7)

for j large enough, hence

-1 o,(3--) (6,.h8)

and lmI! -0O.jqmowl)

The integral 13 follows exActly the sam analysis so that one has also

1 3 -O(J"1 ) and m-I" 0
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For the integral 12 one has

2 
"2

Since

I: 2 + i = I. l - I > 2j 0- (j > 0), (6.50)

one may choose j so large that 2J-O(j 1 )Io61 > O, then

-2 = °a(t2)+2t (61)

Using Equation (6i45), one obtains

2 de2"j J . (6.52)j a(22 ),21

Since

tcos ( > e { + Q(Jl)}, (6.53)
2

one has
1& 0" ) + 2 1 > O,(e 2ftj)  (6.-54)

12 a O - 1 (6.55)

4ad

lim 12 Q

Exactly the same analysis applies to so that '4 = O(j1) ad l 14 - 0.

The theorem is now estabUshed... .
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